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SUMMARY/OVERVIEW:

The objective of this study is the fundamental understanding of fuel disintegration and mixing in
a supercritical environment (relative to the fuel) in order to determine parameter regimes
advantageous to mixing. The approach is based on the future goal of developing a model for a
supercritical, turbulent jet mixing with surrounding fluid. The method is one that combines the
modeling of supercritical fluids with a systematic development based on the Large Eddy
Simulation (LES) approach. This systematic development includes a consistent protocol based
upon Direct Numerical Simulations (DNS) for developing a Subgrid Scale (SGS) Model
appropriate to supercritical fluids, rather than choosing in an ad hoc manner an existing SGS
model developed under assumptions inconsistent with supercritical fluid behavior. This SGS
model should be used in future studies of supercritical turbulent jets utilizing the LES
methodology.

TECHNICAL DISCUSSION

During this initial year, our activities focused on first deriving the correct Large Eddy Simulation
(LES) conservation equations, through filtering, from the Direct Numerical Simulation (DNS)
equations. These LES equations contain several types of terms; (1) terms which are akin to those
of the DNS equations except that they are now functions of the filtered dependent variables, and
thus are called "resolved" because the equations are solved at the scale of the filtered variables
variation, (2) subgrid scale fluxes of momentum, enthalpy and species, and (3) terms that are
gradients of the difference between a LES (i.e. filtered) quantity and the DNS mathematical form
of the same quantity calculated as a function of the filtered variables, with other terms such as the
difference between triple correlation terms also appearing in the energy equation. Type (1) terms
are the basic terms in the LES equations. Type (2) terms are the classical subgrid scale (SGS)
fluxes that are usually modeled in the LES equations to reproduce the behavior of the scales that
have been filtered; below we discuss the modeling of these terms. Type (3) terms are usually
neglected without justification other than to state that they are believed negligible - these are
called "the LES assumptions"; we have found that for supercritical situations neglecting these
terms is certainly not correct, as discussed below.
To evaluate the LES assumptions as well as to assess the mathematical form of the SGS fluxes,
we used a DNS database of a temporal mixing layer portrayed in Fig. 1. The initial conditions for
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the several DNS of the database are listed in Table 1, where pr is the reduced pressure, which in
all cases in approximately 2. In each DNS, a transitional state has been reached, and it is this
transitional case that has been analyzed for SGS model development. The details of the DNS and
the flow behavior have been described in detail in [ 1-3].

(i)LES assumptions. To analyze the terms in the LES equations, budgets of the filtered
equations were calculated over the entire domain volume at the transitional states. It turns out
that in the momentum equation, the leading terms are: the resolved convective term, the
pressure gradient and the gradient of the difference between the LES pressure and the pressure
computed using the real-gas equation of state (EOS) and the filtered variables. The next terms in
order of magnitude are the resolved stresses, the subgrid stresses, and the gradient of the
difference between the filtered stresses and the stresses calculated as a function of the filtered
variables; these terms are at least an order of magnitude smaller than the leading terms. In the
species equations, in decreasing order the leading terms are: convection, SGS flux and resolved
flux which is of same order of magnitude as the gradient of the difference between the filtered
flux of species and the flux calculated using the filtered variables. Similarly, in the energy
equation, the convection term is the largest, followed by a group of terms at least an order of
magnitude smaller: the pressure work, the SGS flux term and the gradient of the difference
between the filtered heat flux and the heat flux computed as a function of the filtered variables.
The next batch of terms in decreasing order of magnitude are the resolved viscous term, the
gradient of the difference between the LES pressure and the pressure computed using the real-
gas EOS and the filtered variables, and the triple correlation. The smallest terms are those
resulting from the LES assumptions on the triple correlations and the stresses. It is thus clear
that terms so far neglected in ALL existing LES under supercritical conditions are important in
that they are of same magnitude as resolved terms. Because the budget represents a volumetric
average, it is also clear that locally, at the high density-gradient-magnitude regions identified in
all supercritical turbulent flows, both in DNS [1-3] and in experiments (e.g. [4,5]), the
contribution of the so far neglected terms in LES may be entirely dominating all other terms.
These conclusions indicated that modeling of novel terms must be undertaken. As a model,
expressions for these terms are first sought for the pressure. The idea was thus to employ a
Taylor expansion of the pressure around the filtered set of variables as a representation of the
large gradient differences between filtered and EOS pressure computed using the filtered
quantity. However, the EOS is function of (v, X, 7), v the molar volume, X the molar fraction
and T the temperature, whereas the conservation equations are solved for the conservative
variables. Moreover, the thermodynamic related variances that are modeled in the SGS fluxes
are associated with the mass fraction Y and the enthalpy H rather than the intrinsic
thermodynamic variables (v, X, 1). The quandary as to the choice of the appropriate variables for
the Taylor expansion, with several possibilities tried, occupied a considerable portion of time, as
did the derivation of the Jacobian for the change of variables from one set of dependent
variables to another. Handling of the very large DNS datasets with the uncertain set of variables
for the Taylor expansion also proved very difficult. It was finally decided to adopt a one-
dimensional problem as a test case for assessing the Taylor expansion effectiveness for several
sets of variables. In this problem, the X and T profiles are prescribed through a hyperbolic
tangent as a function of an index in such a manner that p calculated through the EOS is constant.
Results of the assessment are shown in Fig. 2. In Fig. 2a one.can see that the Taylor series
expansion in the variables (v, X, T) is a much better approximation of the filtered p than is p
computed from the EOS as a function of the filtered variables, and this holds whether the Taylor
expansion is calculated analytically or numerically; therefore the principle of the Taylor
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expansion for such calculation is validated. Figure 2b shows that the set (p, Y, H) is not as
appropriate as the set (p, pY, pE) for approximating the filtered pressure through the Taylor
expansion. This observation indicates the set of variables to choose for the transformation from
the intrinsic set, a task that is currently underway as a precursor for a priori assessment of the
models on the databases.
An evaluation on the DNS database of a model previously used for the filtered triple correlation
difference under atmospheric conditions [6] proved that the previous model remains valid under
supercritical conditions.

(ii) SGS fluxes. Three models were tested for the SGS fluxes: (1) the Smagorinsky (SM)
model with the trace computed using the Yoshizawa (YO) model, (2) the Scale Similarity (SS)
model, and (3) the Gradient (GR) model of [7]. These tests were a priori, meaning that the
mathematical form was tested (the correlation) and a proportionality coefficient was computed
(through a least square fit) using the DNS database. An example of this assessment is shown in
Fig. 3 for the SGS species flux for the OHe600 layer, which is that having the highest Reynolds
number at transition. The assessment is shown for the larger of the two grid filters considered,
and for the SS model at two test filters, model SS1 (test filter has same size as the grid filter) and
SS2 (test filter is twice the size of the grid filter). The results are typical of the findings for all
SGS fluxes. The SM model shows poor correlation with the exact SGS fluxes, while the GR and
SS models have high correlations. Furthermore, the calibrated coefficients for the GR and SS
models yielded good quantitative agreement with the SGS fluxes. However, comparison among
the layers in the DNS database revealed that statistically, the calibrated coefficients were not
generally valid, indicating that most likely a dynamic strategy would be necessary for computing
these coefficients in a posteriori calculations.
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Name HN400 HN500 HN600 HN800 0H750 OH550 OH500 OHe600

Species 2 C 7H 16 C 7H 16 C 7H 16 C 7 H 16  02 02 02 02

Species 1 N 2  N2  N2  N2  H2  H2  H2  He

T2 (K) 600 600 600 600 400 400 235 235

T1 (K) 1000 1000 1000 1000 600 600 287 287

P11P2 12.88 12.88 12.88 12.88 24.4 24.4 24.51 12.17

po (atm) 60 60 60 60 100 100 100 100

Reo 400 500 600 800 750 550 500 600

Table 1. Initial conditions of the Direct Numerical Simulations (DNS) database. In all simulations
M,,o = 0.4, 8.,o = 6.859x10"3 m (see Fig. 1). For the C7H16/N2 layers, Pr = 2.22 and ((P2U2)/(P1U 1)) =

5.276; for the 0 2 /H2 layers, Pr = 2.01 and ((P2U2)/(PIUI)) = 5.001 for OH550 and 0H750, and

((p2Uz)/(P 1U0) = 4.951 for OH500 and for the O2/He layer Pr = 2.01 and ((P 2U2 )/(P1U1)) = 3.500.
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Figure 1. Mixing layer configuration for the DNS listed in Table 1.
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Figure 2. Filtered pressure and pressure computed as a function of the filtered field and pressure
computed as a Taylor expansion of different sets of variables. (a) Intrinsic thermodynamic
variables, (b) Two other sets of thermodynamic variables.
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Figure 3. A priori assessment for the species SGS flux computed on the DNS database OHe600

(Table 1). The legend is: - Exact; -- r -- -- GR, CGR=0.ll80; -- T - , r -- SM, Csm=0.0622;
--.-- SS1, Css1=1.4671; -. SS2, Css2=0.5369.
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